Effect of indoor air pollution from biomass and solid fuel combustion on prevalence of self-reported asthma among adult men and women in India: findings from a nationwide large-scale cross-sectional survey
OBJECTIVES
Increasing prevalence of asthma in developing countries has been a significant challenge for public health in recent decades. A number of studies have suggested that ambient air pollution can trigger asthma attacks. Biomass and solid fuels are a major source of indoor air pollution, but in developing countries the health effects of indoor air pollution are poorly understood. In this study we examined the effect of cooking smoke produced by biomass and solid fuel combustion on the reported prevalence of asthma among adult men and women in India.
METHODS
The analysis is based on 99,574 women and 56,742 men aged between 20 and 49 years included in India's third National Family Health Survey conducted in 2005-2006. Effects of exposure to cooking smoke, determined by the type of fuel used for cooking such as biomass and solid fuels versus cleaner fuels, on the reported prevalence of asthma were estimated using multivariate logistic regression. Since the effects of cooking smoke are likely to be confounded with effects of tobacco smoking, age, and other such factors, the analysis was carried out after statistically controlling for such factors.
RESULTS
The results indicate that adult women living in households using biomass and solid fuels have a significantly higher risk of asthma than those living in households using cleaner fuels (OR: 1.26; 95%CI: 1.06-1.49; p = .010), even after controlling for the effects of a number of potentially confounding factors. Interestingly, this effect was not found among men (OR: 0.98; 95%CI: 0.77-1.24; p = .846). However, tobacco smoking was associated with higher asthma prevalence among both women (OR: 1.72; 95%CI: 1.34-2.21; p < .0001) and men (OR: 1.35; 95%CI: 1.49-2.25; p < .0001). Combined effects of biomass and solid fuel use and tobacco smoke on the risk of asthma were greater and more significant in women (OR: 2.16; 95%CI: 1.58-2.94; p < .0001) than they were in men (OR: 1.34; 95%CI: 1.04-1.72; p = .024).
CONCLUSIONS
The findings have important program and policy implications for countries such as India, where large proportions of the population still rely on polluting biomass fuels for cooking and heating. Decreasing household biomass and solid fuel use and increasing use of improved stove technology may decrease the health effects of indoor air pollution. More epidemiological research with better measures of smoke exposure and clinical measures of asthma is needed to validate the findings.
Resource information
- Asthma
- Diagnosis
- Risk factor: indoor air pollution